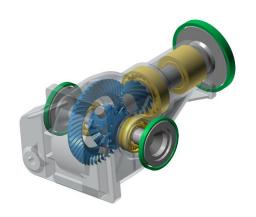


KISSsoft System Module 2025

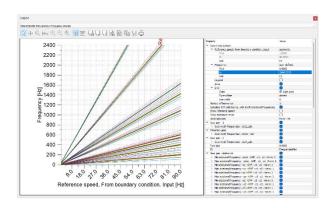
用户界面友好


- KISSsoft 的外观与体验
- 同时显示多个窗口

在 KISSsoft System Module 中,可以同时排列多个窗口和选项卡,以加快工作流程,并可在优化单个零部件时,提供可视化的模型结构。

3D 显示

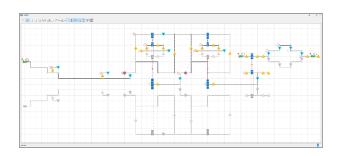
- 根据零件参数自动创建传动机构模型
- 使用导入的 CAD 数据进行干涉检查



无论传动系统是通过Sketcher 绘图板定义,还是使用模型树定义,也无所谓是否定义了齿轮和轴的详细参

数,用户都可以使用3D显示快速校核设计空间中的布局和使用情况。

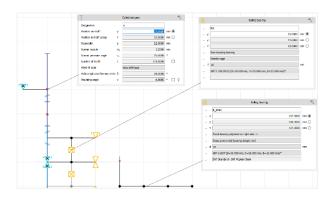
激振频率


- 齿轮啮合频率、追逐齿频率、装配频率
- 轴承基频和故障频率

了解齿轮和轴承频率有助于故障检测,以避免失效停机或规划维护工作。频率会在一定转速范围内进行计算,并考虑谐波和边频。

拓扑结构定义

- Sketcher 中的结构简图
- 使用鼠标和键盘进行建模



使用 Sketcher, 您可以定义齿轮箱或传动系统的拓扑 结构, 就像使用

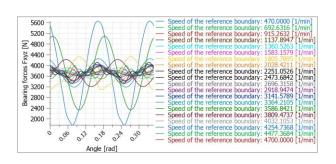
笔和纸绘图一样。而在软件中,您需要使用鼠标和键盘,在网格上绘制整个系统。

注释

- 显示零部件基本属性
- 标签页中显示相应零部件名称

用户可以使用注释对主要的零部件数据进行快速概览 ,例如齿数、模数、轴总长度或轴承型号等。这可简 化设计审查或解释设计时的沟通。

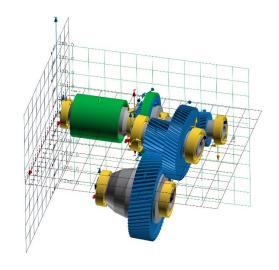
表格数据概览


- 零部件参数列表
- 分为子系统级或系统级

tolling bearings											67	
Calculation			± mainline_calc	_± 25.2	mainline_calc	교	mainline_calc	교	planet_calc	교	s2_calc	
haft			-C- smot		= 51	-C-	s1	-2-	spp	-0-	52	
ype		in 65°	Deep groove ball bear (single n		Deep groove ball bearing (single row)	Taper	ed roller bearing (single row)		Needle cage	Tapered	roller bearing (single row)	
lumber		in bija	507	230	90F 6012		50F 320 s0 X		90F K 25K33K24	FAG K3	M511946-3M511910	
ieometry												
ype			Deep groove ball bearing (single row)		Deep groove ball bearing (single row)		Tapered roller bearing (single row)		Needle cage		Tapered roller bearing (single row)	
lumber			SKF 210	507	6012	SIF 33	010 X	90° K 25X33X24		FAG KOMS	11946-3M511910	
nner dameter	d	mm	90.0	000	60.0000		50.0000		25.0000		65.0000	
ixternal diameter	D	nm	90.0	000	95.0000		80.0000		33.0000		110.0000	
ildth	8	mm	20.0	000	18.0000		20.0000		24.0000		28.0000	
iominal contact angle	01	•	0.0	000	0.0000		15.9454		0.0000		15.0271	
asic dynamic load rating	c	N	39100.0	000	30700.0000		75100.0000		31900.0000		119000.0000	
asic static load rating	C ₀	N	34500.0	000	23200.0000		88000.0000	47500.0000			167000.0000	
atigue load limit	C.	N	1460.0	000	980.0000		9650.0000	5850.0000			21100.0000	
iominal dearance			ISO 5753-1:2009 C0	150	5753-1:2009 C0	Own in	out	Own inpu	ıt.	Own input		
iominal diametral dearance	Per	mm	0.0	145	0.0180		0.0000		0.0000		0.0000	
blerance class								150 3030	0:2022 Needle cage			
haft tolerance		mm							0			
ub tolerance		mm							0			
nner ring temperature	T,	4C		nan	nan		nan		70.0000		nan	

表格中总结了每种部件的重要数据。这些表还提供关 联部件的信息,例如,轴承是安装在哪根轴上。在未 来的版本中,将可以导出表格并更改内容。

受迫响应分析


- 齿啮合引起的激励等
- 得到随时间变化的轴承力

在受迫响应分析中,考虑了与全部齿轮啮合、轴不平 衡和扭矩波动有关的传动误差的激励。壳体噪声可以 使用随时间变化的轴承力来计算。

系统变形

- 变形部件的 3D 显示
- 用于齿轮啮合错位量的评估

系统变形是可视化的。这有助于了解导致齿轮啮合错 位的主要因素,例如轴、轴承、齿轮本体或壳体的挠 度。

可通过我们的网站申请提供测试版本: www.kisssoft.com/trial