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Introduction
The most important criteria for the design of a gearbox is a suf-
ficient strength of all components. There are, however, different 
ways to define this demand. The two most common ones are 
either defining minimum required safety factors for a given life-
time or prescribing a minimum likelihood to achieve a certain 
lifetime, often expressed in the reliability of a component within 
a given lifetime. This paper discusses the different approaches 
and the relationship between the safety factors and the calcula-
tion of the reliabilities. It will concentrate on ISO and AGMA 
standards for gears, shafts and bearings and will only discuss 
endurance calculations, no static calculations.

After an introduction to the concept of reliability calcula-
tion based on the book of Bernd Bertsche (Ref. 2), an example 
to show the difference between safety factor and reliability is 
given. After that, the built-in reliability coefficients of ISO 281 
and AGMA 2001-D04 are compared to the general approach in 
Bertsche.

Symbols
Symbol Notation Unit

R Reliability (of a single component) -

t Lifetime/number of load cycles (depends on 
context) h/-

t0 Number of load cycles without failure -

T Characteristic service life (in cycles) with 63.2% 
probability of failure(or 36.8% reliability) -

b Weibull form parameter
ftB Factor according to Table 2

Lp
Achievable service life of the component with a 

failure probability p h

L10
Achievable service life of the component with 0.1 

(10%) probability of failure h

p Specific probability of failure -
A1 Reliability factor from ISO 281 -
KR Reliability factor from AGMA 2001 -

The Art of Designing a Gearbox
When challenged with the job of designing a new gearbox, the 
engineer has several suitable calculation methods available for 
the sizing of the components. Typically, these methods deter-
mine the maximum effective stress in the component and the 
permissible stress for the current case. The detail level of model-
ling can be very different, ranging from simple assumptions to 
sophisticated models. In most cases, the methods deliver a safety 

factor in the end, which is the quotient of permissible stress over 
effective stress.

Due to commercial demands (cost reduction and sales 
increase), the sizing process has a design lifetime as a required 
parameter in its center. Ideally, all components should fail at the 
same time. Since the failure of the first critical component nor-
mally determines the end of life of the complete gear box, each 
component that is designed for a longer lifetime is, in this sense, 
overdesigned and generates unnecessary costs. For consumer 
products, there might be additional requirements to reduce the 
lifetime of the product to sell replacements.

Inside the methods, the parameter lifetime influences the per-
missible stress by making it dependent on the number of load 
cycles. This follows the idea that the damage to a part is caused 
by the change in stress and leads to S-N curves for the selected 
materials. With this, the safety factor depends on the number of 
load cycles.

With this procedure at hand, everything seems well-defined, 
and indeed in practice, this approach has worked very well. 
However, expecting the components to fail at the exact num-
ber of load cycles defined for the lifetime means asking too 
much. The S-N curves for a specific material are based on tests 
conducted. In these tests, samples are exposed to alternating 
load and the number of load cycles until failure is recorded. Of 
course, the results show a certain variation. The final S-N curve 
is therefore a statistically extracted curve for a given failure 
probability. Several standards define the procedure on how to 
perform this extraction, for instance (Ref. 11).

For the sake of clarity, we will first define the central variables.
Design life, achievable life. In this paper, we are only looking 

at fatigue strength due to changing stresses. If there are changes 
in stress, there are also load cycles. Typically, there are a number 
of hours given, which is the planned lifetime for the component 
or the machine. Since questions might arise on how to inter-
pret this number (percentage of up-time considered, changing 
speeds), it is a good idea to transfer the hours into load cycles. 
In this way we end up with a number of load cycles the machine 
is designed for — the design life. And we might determine the 
maximum number of load cycles until the machine fails with a 
certain likelihood — this is the achievable life.

Effective stress; permissible stress; safety factor. Due to the 
loads applied, there is a stress distribution inside the components. 
This stress is time-dependent, changing with the load cycles. 
Typically, the maximum stress is calculated with a constant part 
(mean value) and a transient part (amplitude). For endurance, 
only the amplitude of the stress is relevant. The stress used for the 
strength assessment is called “effective stress.”
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On the other hand, the material of the component can endure 
a maximum stress level for a given number of load cycles, 
i.e. — the “permissible stress.” The quotient of permissible stress 
over effective stress gives the safety factor. This safety factor must 
be larger than a threshold value to fulfill the requirements. This 
threshold value is called the “required safety factor.”

S-N curve. The basis of most methods is an S-N curve that 
defines the permissible stress limit over the number of load 
cycles. The name “S-N curve” simply comes from the fact 
that it shows a stress (S) over the number of load cycles (N).

The basis for this curve is a series of tests in which test 
specimens were subjected to load under standardized con-
ditions until they failed. The number of load cycles until 
failure at a given load level is recorded and represents the 
result of one of these tests. However, if a test is repeated 
several times with the same load conditions, and all other 
environmental parameters fixed, still no one would expect 
all specimens to fail at the exact same number of load 
cycles. Rather, there will be some scattering of the results. 
So, some statistical evaluation needs to be done to produce 
an S-N curve. Figure 1 shows a typical result of a gear test 
with constant torque levels and the resulting scattering of 
load cycles until failure.

For bearings, the scattering can get quite extreme. Figure 2 
shows a graph from Harris (Ref. 1). On the y-axis, the num-
ber of load cycles is found; on the x-axis is the percentage 
of failed bearings. The first bearing fails after about 30 ⋅ 106 

revolutions, and the last one after 1,800 ⋅ 106 revolutions. The 
result is a factor of 60 from the first to the last! The L10 life-
time in this case — where 10% of the bearings failed and 90% 
are still working — would be about 120 ⋅ 106 revolutions. This 
is about 4 times more than the first failure and 15 times less 
than the last one.

Assuming an arbitrary number of tests were conducted 
to allow statistical evaluation, the combination of all 
tests at a specific load level requires the definition of a 

Figure 1  Series of gear tests for three different torque levels.

Figure 2  Results of bearing tests (Ref. 1).

59March/April 2018 | GEAR TECHNOLOGY



probability value. Changing the probability shifts the S-N curve 
horizontally.

Damage. The calculation methods discussed here all follow 
the concept of damage accumulation. This assumes that small 
cracks or failures in the material structure are enlarged due to 
the changing stress levels. The theory predicts the growth of 
the crack following a logarithmic law. The ratio of design life 
over achievable life is called “damage.” The idea is that the same 
length on the load cycle’s axis (which is scaled logarithmically) 
corresponds to the same amount of damage caused. The damage 
is usually expressed as a percentage, with the idea that reach-
ing 100% damage means failure. Mathematically, damage larger 
than 100% is possible.

Relationships. Figure 3 shows the relationships between the 
terms described above. It starts with an appropriate number of 
tests, which in conjunction with a given failure probability, lead 
to an S-N-curve. The curve defines the permissible stress over 
the number of load cycles, so if we use the graph with a given 
number of load cycles (design life), we find the corresponding 
permissible stress (green arrows). On the other hand, if we have 
a given effective stress, then we can read the achievable life from 
the diagram (orange arrows). The quotient of permissible stress 
over effective stress gives the safety factor. And finally, the ratio 
of design life to achievable life defines the damage.

Methods to Dimension a Gearbox
There are different approaches used for 
designing a gearbox. The simplest one 
is to determine the stresses in the com-
ponents and make sure to stay below a 
given threshold that comes from experi-
ence. This approach is not very sophis-
ticated, since it blanks out many influ-
ences that affect the permissible stress. 
Still, it is commonly used, especially 
when FEMs (finite element methods) are 
applied, simply because an FEM can only 

calculate the effective stress — not the permissible.
An alternative is the application of a standardized method (or 

textbook method). The most common concept here is the deter-
mination of the effective stress by applying simplified models 
leading to analytical formulations. In a second step, the permis-
sible stress is calculated (or read from a table) and compared to 
the effective stress by calculating the safety factor. Instead of a 
safety factor, some methods provide the exposure of the mate-
rial. This is basically the same, only expressed in a different way. 
As a design requirement, a minimum safety factor (or maxi-
mum exposure) is given.

Some of the standardized methods for bearings calculation, 
like ISO 281 (Ref. 3), directly deliver an achievable life out of 
the loads. In the case of the bearings, the loads are the forces in 
radial and axial direction.

If load spectra are applied, a different approach is the calcu-
lation of damage. The advantage is that damage is more easily 
compared across different components than safety factors.

Failure Probability of Machine Elements
All the above methods have one major weakness in common: 
they are based on an intrinsic failure probability which differs 
from method to method (Table 1). Therefore if a shaft has a 
calculated safety factor of 1.2 and a gear root has a safety factor 
of 1.3, it is not clear which is the more critical component. As 
well, the calculated life of a bearing and of a gear are not directly 

Figure 3  Relationships between strength parameters.

Table 1  Probability of failure used by various calculation methods when determining material 
properties (Ref. 8)

Calculation procedure Probability of 
damage p Comment

Shaft, DIN 743 2.5% Assumed, not documented
Shaft, FKM guideline 2.5%

Shaft, AGMA 6001 1% If kc = 0.817
Bearing, ISO 281 10% If factor a1 = 1.0

Tooth flank, ISO 6336; DIN 3990 1%
Tooth bending, ISO 6336; DIN 3990 1%

Tooth flank, AGMA 2001 1% If reliability factor KR = 1
Tooth bending, AGMA 2001 1% If reliability factor KR = 1
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comparable.
A material strength value with a failure probability of 90% is 

higher than a material strength value with a failure probability 
of 99%. So if the 90% failure probability is applied, the safety 
factor is greater and the element has both a greater service life 
and a lower damage rate for its design life. Damage that is calcu-
lated using the methods prescribing different failure probabili-
ties cannot be compared directly. A gear unit may fail because a 
part that is not considered to be critical breaks prematurely. This 
happens quite frequently in real life.

To overcome this problem, the reliability concept can be used. 
Here the result is a curve that shows the probability of failure 
of a component or a system over the lifetime. When statistical 
parameters such as the scatter of results in a standard distribu-
tion are determined on the basis of measurements on probes, 
a probability of failure as a function of time (or cycles) can be 
determined using a statistical approach. The opposite of the 
probability of failure is called “reliability.” Therefore, since the 
reliability calculation takes into consideration the inherent fail-
ure probability (Table 1), the calculated reliability at design life 
of different parts can be compared effectively with each other. 
Also, at a given probability level the component with the small-
est achievable life is the critical component of the system.

Probability distributions. In statistics, probability distribu-
tions are used to describe stochastic processes (see numerous 
textbooks, e.g. — Ref. 9). A probability distribution is a func-
tion that gives the likelihood of an event for a specific value of a 
probability variable. In our case the event is failure (or survival) 
and the probability variable is the number of load cycles.

The reliability function R(t) gives the probability of survival 
until t load cycles. The values of R(t) range between 0.0 and 1.0, 
often expressed in percent: R(t) ⋅ 100%. In principal, t is an inte-
ger value; however, due to the large number of load cycles (from 
several thousand to billions), we can treat it like a real value and 
use the existing theories.

For the definition of a probability distribution, the first deriv-
ative R′(t) is defined, i.e. — the so-called density. The density is a 
function that defines the probability of the event happening at a 
given number of load cycles.

The most common distribution for general purposes is the 
normal distribution. This distribution is defined by the mean 
value µ and the standard deviation σ. The density of the nor-
mal distribution is symmetric to µ. The standard deviation σ 
controls how wide the distribution is; although for small σ the 
density looks like it becomes zero with enough distance from 
the mean, it never actually does. So also for negative values of 
t there is a positive likelihood that failure occurs. Furthermore, 
the failure rate R′(t)/R(t) of the normal distribution is increasing 
over t. Due to these limitations, the normal distribution is not 
very often used in reliability engineering.

A more general approach is the Weibull distribution. Two 
variants are possible — the two-parametric and three-
parametric Weibull distribution, where the two paramet-
ric is a special case of the three parametric.

The two-parametric Weibull distribution leads to the 
reliability function:

(1)
R(t) = e – ( t )b

T

where T is the characteristic lifetime (defined by the condi-
tion R(T) = 0.632) and b is the shape parameter.

The three-parametric Weibull distribution has t0 as a third 
parameter, which shifts the first occurrence of failure to the 
point t0 by the substitution:

(2)t → t~ – t0

This substitution gives the reliability function:
(3)

R(t) = e – ( t– t0 )b
T– t0

In practice, the Weibull distribution can be used to model a 
wide variety of real-world scenarios, with the most famous one 
being the “bathtub curve.” For this, three sections with individual 
parameters — t0, T, and b — are defined, the first with a monoto-
nous decreasing failure rate, the second with a constant failure 
rate, and finally a third section with increasing failure rate.

Determining the reliability of machine elements. There are 
currently no mechanical engineering standards that include the 
calculation of probability. A classic source for this calculation 
is Bertsche’s book (Ref. 2), in which the possible processes have 
been described in great detail. Bertsche recommends the use of 
the 3-parameter Weibull distribution.

To simplify the writing of the equations, we define the lifetime 
Lp as the lifetime with reliability R(Lp) = (100−p) (%). Both p and 
R(t) are usually expressed in percent (%). To apply the Weibull 
distribution, several parameters are needed that depend on the 
type of component (gear, bearing, shaft). Bertsche tabulates the 
shape parameter b and a factor ftB, that relates t0 to the lifetime 
with 10% failure probability, L10; see Equation 5.

With these parameters, T and t0 can be derived from the 
achievable life of the component, Lp, as follows (with failure 
probability p according to the calculation method from Table 1, 
b and ftB from Table 2, according to Bertsche):

(4)
T = ( Lp–ftb ∙ L10 + ftb ∙ L10)b√–In (1–p)

(5)t0 = ftb ∙ L10

(6)
L10 =

Lp

(1–ftb) ∙ b√ In (1–p) + ftbIn (0.9)
In Table 2 the parameter b has a wide range for breakage of 

shafts and tooth root. Bertsche comments in his book that for b, 
this is due to the confidence intervals of the statistical analysis 
(some of the test batches were relatively small), but also because 
the shape parameter b depends on the stress level: the higher the 
stress level, the larger the shape parameter.

For ftB, however, it is mainly for gears with pitting as failure 
mode where the interval gets large. Here Bertsche states that this 
is due to a small number of tests available. He also voices the 

Table 2  Factors for a Weibull distribution according to Bertsche (Ref. 2)
Factor ftB Weibull form parameter b

Shafts 0.7 to 0.9 1.1 to 1.9
Ball bearing 0.1 to 0.3 1.1

Roller bearing 0.1 to 0.3 1.35
Tooth flank 0.4 to 0.8 1.1 to 1.5
Tooth root 0.8 to 0.95 1.2 to 2.2
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Figure 4  Example gearbox modelled in KISSsys.

Figure 5  Calculated reliability curves.
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hope that further tests could narrow this range down.
Equation (1) for R(t) can now be used to display the progres-

sion of reliability over time (or number of cycles) as a graphic. 
The load cycle values t0 and T can then be calculated after a ser-
vice life calculation. Equations 4–6, using the achievable service 
life Lp, can be used for this purpose.

An example application. To illustrate the differences between 
the concept of safety factors and reliability, an example is shown. 
Figure 4 shows the model of a two-stage gearbox in KISSsys 
(Ref. 10). The design life is 5,000h. So, the critical component 
appears to be gear 1 with a flank safety factor of slightly below 1.0 
(0.996) (see box “1”). The bearings have a calculated lifetime of 
above 7,000 hours (see box 2) and thus seem to be on the safe side.

However, looking at the graph in Figure 5 showing the reli-
ability curves of some selected elements of the gearbox, the situ-
ation is more complex. In this graph the reliability was calcu-
lated according to the method of Bertsche (Ref. 2). The dark red 
curve shows the reliability of the flank for gear 1. For most prob-
ability levels, this curve is left of the two bearing curves shown, 
confirming the assessment from before. But this is only true for 
relatively low probabilities; the lower horizontal orange line is 
on the 90% probability level. Here, gear 1 indeed has the shorter 
lifetime. Still, this is above the required 5,000h design life, which 
is marked with the vertical blue line.

At 99% probability, the bearing life is much lower — about 
3,000 hours. This is marked with the upper horizontal dark 
orange line. So, the more critical components are indeed the 
bearings. The curve for gear 1 crosses the 99% line left of the 
5,000-hour bar, confirming the safety factor smaller than one.

Finally, the pink curve shows the reliability of the whole sys-
tem. It is, by definition, always the left-most curve. The more 
components are considered, the further left this curve is mov-
ing. It is interesting to observe that for the system, the lifetime 
with a probability of 99% survival is about 1,800 hours, and for 
90% reliability, it is about 3,000 hours. The probability of reach-
ing the design life of 5,000 hours with this gearbox without fail-
ure is only about 73%.

Comparison of Bertsche with the Standards
Some standards, such as AGMA 2001-D04 (Ref. 7) or ISO 281 
(Ref. 3), foresee factors to change the underlying failure prob-
ability of the calculation. It is thus a natural question of how well 
these factors compare to the approach of Bertsche.

Bearing lifetime per ISO 281. First, we look at ISO 281. As 
mentioned, bearings show a wide scattering of the results when 
lifetime tests are conducted. Therefore the approach for bearings 
is slightly different than the other methods. The method does 
not calculate effective stresses and a safety factor for a given life-
time, but directly a lifetime that is reached with a certain likeli-
hood. So, it is easy to compare with the formulae in Bertsche.

In ISO 281 the factor a1 is used to take different reliabilities 
into account (Table 3). The factor is directly multiplied to the 
lifetime L10 for 90% reliability, so it is straightforward to interpret 
(e.g. L1 for 99% reliability equals to 0.25*L10). To compare this 
factor with the values used by Bertsche, we calculate ftB from a1:

Equation 3
(7)

R(t) = e – ( t–t0 )b
T–t0

can be rearranged to:
(8)In (R(t)) = –( t–t0 )b

T–t0

With (Eq. 5), which relates t0 to the lifetime with 10% failure 
probability L10 with the factor ftB,

(9)t0 = ftb ∙ L10

(10)b√–In (R(t)) = t–ftb ∙ L10
T–ftb ∙ L10

Solving for ftB gives:
(11)

ftb =
b√–In (R(t)) ∙ T–t

(b√ –In (R(t)) –1)∙ L10

Extracting L10 outside of the bracket in (Eq. 4) results in:
(12)

T = ( t –ftbL10 + ftb)∙ L10b√ –In (R(t))

For the lifetime t = L10 we have 10% failure probability, so the 
reliability is 90%:

(13)t = L10 => R(t) = 0.9
We set t = L10 in (Eq. 12):

(14)
T = ( 1–ftb + ftb) ∙ L10b√–In (0.9)

We now write the factor a1 = a1 (p) from Table 3 dependent on 
the probability p.

(15)R(t) = p => t = Lp =: a1(p) ∙ L10

Injecting (Eq. 14) and (Eq. 15) in (Eq. 10) and sorting for ftB 
gives:

(16)
ftb ∙ ( b√–In (p) – 1) =

b√–In (p) – a1(p)b√–In (0.9) b√–In (0.9)

Finally, we find a relationship between a1 (p) and ftB:
(17)

ftb =

b√ –In (p) – a1(p)–In (0.9)
b√ –In (p) – 1–In (0.9)

Table 3  Definition of a1 in ISO 281
Reliability % Lnm a1

90 L10m 1
95 L5m. 0.64
96 L4m 0.55
97 L3m 0.47
98 L2m 0.37
99 L1m 0.25

99.2 L0.8m 0.22
99.4 L0.6m 0.19
99.6 L0.4m 0.16
99.8 L0.2m 0.12
99.9 L0.1m 0.093
99.92 L 0.08m 0.087
99.94 L0.06m 0.080
99.95 L0.05m 0.077
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We can use this relationship to calculate the lifetime ratio 
aBertsche (p) = Lp/L10 for a given ftB:

(18)
aBertsche (p) = 

b√ In (p) – ftb ∙ ( b√ In (p) – 1)In (0.9) In (0.9)
Figures 6 and Figure 7 show the results. Bertsche proposes a 

range of 0.1 ≤ ftB ≤ 0.3. For a large range of the probability, this 
is fulfilled, only for reliabilities above 99.5%, ftB drops below the 
lower limit. Figure 7 shows the lifetime ratios of ISO 281 over 
Bertsche. Until 99% probability, the ratio is close to 1, so both 
methods give nearly the same results. Then ISO 281 gets more 
conservative and for 99.95% reliability, the standard predicts 

about 50% of the lifetime compared to 
Bertsche.

So, for the most common range of 
requested reliability from 90% to 99%, 
both methods give similar results. For 
higher probabilities, ISO 281 is more 
conservative.

Gear strength per AGMA 2001-D04. 
The second method we investigate 
is AGMA 2001-D04, “Fundamental 
Rating Factors and Calculation 
Methods for Involute Spur and Helical 
Gear Teeth” (Ref. 7). In the example 
given, we only focus on root fracture; 
the same statements can be made for 
flank failure (pitting).

The aforementioned method fea-
tures a reliability factor KR which 
reduces or increases the allowable root 
stress number st:

(19)
St =

satYN

SFKTKR

Table 5 shows the values of KR for 
different failure probabilities. Since 
AGMA 2001 does not explicitly calcu-
late an achievable lifetime (although 
for a given safety factor, the respective 
lifetime can be calculated using this 
standard), it is not possible, like for 
the bearings above, to directly com-
pare the reliability factor with results 
from Bertsche. So here we use a dif-
ferent approach: we use a commercial 
software package (KISSsoft; Ref. 10) 
to calculate the achievable lifetime for 
a given gear set according to AGMA 
2001 by varying the design life until 
we have a safety factor of 1.0. Then we 

Table 4  Definition of example gear set
Transmitted power (kW/hp) [P] 26.099 / 35.000

Speed gear 1 (1/min) [n] 2950.000
Pressure angle at normal section (°) [alfn] 20.000

Helix angle at reference circle (°) [beta] 14.000
Number of teeth [z] 27 104

Face width (mm/in) [b] 20.32 / 0.800 20.32 / 0.800

Table 5  Definition of KR in AGMA 2001-D04 (Ref. 7)
Requirements of application KR 

1

Fewer than one failure in 10,000 1.50

Fewer than one failure in 1,000 1.25

Fewer than one failure in 100 1.00

Fewer than one failure in 10 0.85 2

Fewer than one failure in 2 0.70 2, 3

NOTES
1 Tooth breakage is sometimes considered a greater hazard than pitting. In 
such cases a greater value of KR is selected for bending.
2 At this value plastic flow might occur rather than pit ting.
3 From test data extrapolation.

Figure 6  Calculated ftB for changing reliabilities according to ISO 281.

Figure 7  Comparison of a1 and aBertsche.
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use these values to calculate the Bertsche parameters T and t0. If 
both methods match, the parameters are nearly constant.

The gear set is defined in Table 4.
For a reliability of 99%, we get an achievable lifetime of 7.8 

hours (failure of root on gear 2). The Bertsche parameters for 
this point are calculated as T = 11.7 hours and t0 = 7.6 hours.

Now we switch to 90% probability, which means a reliabil-
ity factor KR = 0.85 is applied. The achievable lifetime increases 
to 57.5 hours. The Bertsche parameters are now T = 77.4h and 
t0 = 50.3h. Obviously, AGMA and Bertsche use a different statis-
tical model.

In a second experiment we calculated the lifetime for 90% 
reliability based on the Bertsche parameters for 99% reliabil-
ity. This results in a lifetime of 8.7h. To find the corresponding 
value for KR, we solve (Eq.19) for KR:

(20)
KR = satYN

SFKTst

We change the allowable stress number in the software manu-
ally to reach the lifetime of 8.7h. Introducing this value into 
(Eq. 20), we find KRBertsche = 0.989. Doing the same with a reliabil-
ity of 99.9%, we find KRBertsche = 1.004.

Figure 8 shows the resulting lifetimes for different probabil-
ity levels from 50% to 99.99%, as defined in Table 5 for both 
AGMA and Bertsche, plotted into the respective S-N curve for 
99% reliability. While the AGMA results seem very scattered, 
the results from Bertsche are in a very small interval. Both 
results, compared to the measurements in Figure 1, seem too 
extreme. This, however, cannot be generalized from a single 
example, so further investigation in this field would make sense 
to optimize the statistical models of the methods.

Summary
The reliability concept may be used to increase the transparency 
of the results of strength calculations of gearbox components. 
The method according to Bertsche is easily applicable, and the 
results seem reasonable. Compared to the reliability factor a 1 
inside ISO 281, there is a very good match of both concepts. 
However, in comparison to the reliability factor KR from AGMA 

2001, there are large differences. It seems that AGMA exagger-
ates the effect of the probability level, whereas Bertsche underes-
timates it. But for a final evaluation, more detailed investigations 
would be necessary. Looking at the improved information for 
the engineer coming out of the reliability concept, further work 
in this field seems well justified. 
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