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The multibody model proposed in this article can 
assess the noise and vibration performance of 
an E-axle with bevel gears as a function of the 
mounting distance (H).
By DAVIDE MARANO, TIMO GIESE, and SAEED EBRAHIMI

I
n this article, a methodology to analyze the NVH per-
formance of an E-axle with bevel gears is addressed. 
The geometry of bevel gears, together with the 
applied ease-off and the misalignment are intro-

duced, and the excitation orders related to the gears 
and bearings are calculated. The E-axle is modeled as a 
flexible multi-body system, and the theoretical aspects 
related to the penalty contact formulation and modal 
reduction (Craig-Bampton method) are discussed.

The NVH performance of the E-axle is evaluated as 
a function of the mounting distance (H), showing a 
significant reduction of the accelerations on a control 
point for a specific positive mounting distance.

Finally, housing sound pressure level 
(SPL) is compared for the selected sce-
narios, showing a significative improve-
ment for the optimized mounting dis-
tance configuration.

1 INTRODUCTION
Spiral bevel gears are commonly used 
to transmit power between intersecting 
rotating shafts. Their applications range 
from both automotive and helicopter 
transmissions to reducers and various 
industrial applications [1]. The presence 
of a spiral angle allows for a smooth 
and gradual engagement of teeth, such 
that the noise, vibration, and harshness 
(NVH) characteristics at high speed are 
improved [2]. The load carrying capacity 
is improved thanks to the overlapping 
tooth meshing [3,4].

From the practical applications of the powertrain 
systems, it is well known the NVH optimization of 
bevel gears is a challenging task. Due to the limita-
tions in geometry and tolerances, difficulties may 
arise  in the manufacturing processes. Furthermore, 
the noise behavior of bevel gears is influenced by 
the soft machining process and the following pro-
cess. Bevel gears are often manufactured as gear sets 
and lapped together as finishing operations, which 
makes the pinion and the gear a pair that must be 
kept together [5]. The differences in the noise spectra 
of the lapped and ground gear sets are perceived to be 
quieter or more pleasant [6].

Altering the noise behavior of bevel gears is demon-
strated in [7] by applying an individual topology devia-
tion. By manipulating the regularity of the convention-

al gear-mesh excitation, the amplitude of tooth mesh 
harmonics is reduced. With the application of topog-
raphy scattering, the tonality of gear noise is reduced.

Considerable improvement of the NVH charac-
teristics of the geared systems can be achieved by 
gear macro- and micro-geometry modifications. 
Optimization of the noise emission level by selecting 
the desired micro-geometry for a torque range can be a 
challenging procedure in the bevel-gear design. A com-
promise between a sufficient load-carrying capacity 
and acceptable noise level can be reached by simulating 
different micro-geometry designs within the loaded 
tooth contact analysis. Since any particular tooth modi-

fication can be valid for a certain operating load range, 
the study presented in [8] analyzes the forced responses 
for several applied mean torque load cases.

Design, manufacture, stress analysis, and experi-
mental tests of low-noise high endurance spiral bevel 
gears is studied in [3]. As the result of this study, 
improvement of the bearing contact, and reduction of 
the magnitude of transmission errors as the precondi-
tion of reduction of noise and vibration are achieved. 
Furthermore, a predesigned parabolic function of the 
transmission errors and avoidance of areas of severe 
contact stresses for the increase of the endurance of 
the gear drives is obtained.

In the simulations and analyses of powertrain sys-
tems, two different cases of heavy- and light-loaded 
operations can be seen [9]. In the case of heavily loaded 

Figure 1: E-axle with 
bevel gearset.
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conditions with large mean torque loads, the 
high-frequency mesh order responses are 
critical. Therefore, the internal gear mesh 
excitations play the major role for the usual 
tonal gear whine noise. On the other hand, 
in the case of light-loaded conditions with 
small mean torque loads, the gear rattle 
noise happens frequently due to the exter-
nal or internal excitations, which lead to the 
loss of contact and tooth impact responses.

Bevel-gear mesh misalignments usually 
result in load distribution shifts and affect 
the noise. The scope of this article is to inves-
tigate the effect of mounting distance (H) on 
the system dynamics of an E-axle. A reduced 
flexible multibody model of the system 
is used to predict accelerations on virtual 
control points on the transmission housing 
and the equivalent radiated power (ERP) is 
calculated for all the tested configurations. 
Results show the overall system noise is min-
imized for a proper value of the pinion offset.

2 E-AXLE BEVEL GEAR GEOMETRY, 
MISALIGNMENT, AND EXCITATION 
ORDERS
The electric axle analyzed in the following is 
a single-speed gearbox, powering the wheels 
of an electric vehicle, shown in Figure 1. 
Power is supplied by a permanent magnet synchronous motor to 
the input shaft and the output gear stage is integrated to the differ-
ential case. The modeling of the differential stage is not considered 
in the present study.

The bevel-gear stage is manufactured by face milling the Gleason-
Duplex method [10]. The pair data and gear macro-geometry data are 
reported respectively in Table 1 and Table 2.

The micro-geometry of the bevel gears is determined by the ease-
off topography of the mating tooth flanks. Ease-off comprises, in 
general, all sorts of the tooth flank modifications (profile crown, 
lead crown, flank twist, and higher-order crown) applied to both 
the pinion and the gear-tooth surfaces. In other terms, it measures 
the extent by which the meshing tooth surfaces of the pinion and 
gear depart from conjugacy. The configuration of the ease-off topog-

raphy of the bevel gears is shown in Figure 2, and the control data 
is reported in Table 3.

2.1 BEVEL GEAR MANUFACTURING
The geometry of the teeth of spiral bevel gears is mainly influenced 
by the choice of the rough machining process [11]. The main manu-
facturing process for spiral bevel gears are the cutter-head processes. 
The differentiation of the two processes, face milling and face hob-
bing, is justified by different process kinematics and defines the suc-
ceeding hard-finishing process as well. The face-milling process is 
a single indexing process in which the work piece is standing still, 
and the rotating cutter head mills a circular arc shaped tooth slot. 
The circular arc allows a grinding process with a cup grinding wheel 
as the hard finishing process. The tooth height is conical, and the 

Pair data – Face milling, Gleason duplex Gear 1 Gear 2

Transverse module gear 2 (outside) met2 [mm] 3.617

Outer pitch diameter gear 2 de2 [mm] 170

Mean spiral angle, gear 1 bm1[°] 48° – Right Hand

Normal pressure angle an [°] 20°

Shaft angle Σ [°] 90°

Hypoid offset a [mm] 25.4

Cutter radius re0 [mm] 76.2

Gear Data Gear 1 Gear 2

Number of teeth z [-] 13 47

Face width b [mm] 28.7 2525

Tip diameter (Outside) dae [mm] 71.4936 171.2028

Tooth depth (Outside)  he [mm] 7.5144 7.3779

Face angle da [°] 22.9698 71.6033

Root angle df [°] 17.4591 65.8597

Profile shift coefficient xhm 0.4185 -0.4185

Tooth thickness modification coefficient xsm -0.0134 -0.0134

Table 1: Bevel gear – pair data.

Figure 2: Ease-Off applied to the bevel gears.

Table 2: Bevel gear – gear data.
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tooth gap is constant. Details about spiral bevel gear manufacturing 
technology can be found in [12,13].

The gear geometry adopted for the simulation has been generated 
by a powerful tool, simulating the cutting procedure for both the 
pinion and the gear. Resulting gear geometries are shown in Figure 3.

2.2 BEVEL GEAR MISALIGNMENT PARAMETERS
The gear mesh misalignments usually result in shifts in the load 
distribution of a gear pair and affect the noise. The misalignment 
parameters are shown in Figure 4 according to the Klingelnberg (or 
Gleason) conventions: The axial offset of the pinion (also referred 
to as mounting distance) is named H (or P); the vertical offset of the 
pinion is named V (or E), and the axial shift of the gear is named J (or 
G). In this article, the Klingelnberg convention is adopted.

With reference to the mounting distance error H, when the mount-
ing distance of the pinion is a positive error, the contact of the pinion 
will move toward the tooth root, while the contact of the mating gear 
will move toward the top of the tooth. This is the same situation as if 
the pressure angle of the pinion is smaller than that of the gear. On 
the other hand, if the mounting distance of the pinion has a negative 
error, the contact of the pinion will move toward the top and that of 
the gear will move toward the root. This is like the pressure angle 
of the pinion being larger than that of the gear. Mounting distance 
error will also cause a change of backlash: Positive error increases 
backlash and negative decrease. Since the mounting distance error of 
the pinion affects the tooth contact greatly, it is customary to adjust 
the gear rather than the pinion in its axial direction.

An LTCA (loaded tooth contact analysis) has been performed on 
the bevel-gear geometry of the case study E-axle, changing the pin-
ion offset from negative to positive values. The results are shown in 
Figure 5.

2.3 GEAR EXCITATION ORDERS OF THE CASE STUDY E-AXLE
The calculation of the gear meshing excitation orders is reported 
in the following, with reference to the input shaft, according to the 
formulas provided in [14] and [15]. The gear and shaft frequencies, 

Control Data Drive Coast

Spiral Angle Value -0.0603° 0.0379°

Pressure Angle Value 0.0178° -0.2183°

Length Crowning Value 68.5407 um 39.6430 um

Profile Crowning Value 1.1562 um 3.8688 um

Bias Value 7.0183 um 7.9648 um

Figure 4: Gear-mesh misalignment parameters according to the Gleason and Klingelnberg conventions.

Table 3: Control data.

Figure 3: Bevel-gear geometry.
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listed in Table 4, are related to:
 � Low harmonics of the shaft speed: originate from unbalance 

and misalignments (parallel and angular).
 �Harmonics of the fundamental tooth meshing frequency and 

their sidebands.
 � Fractional frequencies of the fundamental frequency (subhar-

monic components).

3 MULTIBODY MODELING OF THE E-AXLE
In this section, the multibody model of the case study E-axle is intro-
duced. The penalty contact formulation, adopted for the modeling 
of gear contact is first explained, then the fundamentals of flexible 
body integration are described.

3.1 DESCRIPTION OF THE CONTACT 
FORCE GENERATION
Today, several contact force models are 
implemented in multibody dynamics mod-
els [16]. In the present study, a penalty con-
tact formulation has been chosen. The pen-
alty approach allows the calculation of the 
contact force as a function of the penetration 
of two contact partners.

The contact force fn is calculated as the 
product of the contact stiffness k multiplied 
by the penetration depth d and the damping 
c multiplied by the penetration velocity d⋅:

The exponents m1, m2, m3 are used to add 
nonlinear behavior, which are typical in technical systems; m3 yields 
an indentation damping effect.

If the contact geometries can be described analytically, as it is 
the case in most rolling bearings, the main task is to determine the 
contact parameters such as stiffness and damping as well as their 
exponents. In the case of line and point contacts, the Hertz theory 
can be used to determine the stiffness and the stiffness exponent 
[17]. For damping, empirical values are usually used, which often 
have a relation to the stiffness. For the representation of the bearing 
assemblies, a force element is selected that uses a three-body 
approach. Here, the inner/outer ring of the bearing is put in contact 
with n rolling elements, which are combined into one body.

If the surface of the contact partners cannot be described ana-

lytically, the contact surfaces are discretized by means of triangula-
tion. The approximation of a curved surface by plane triangles or 
squares has the disadvantage that these contacts are susceptible 
to contact noise.

Thus, when using such contacts, care must be taken to ensure the 
mapping of the surface strikes a balance between computation time 
and result accuracy. Figure 7 shows different faceting of the pinion 
as a function of the main discretization parameters (plane tolerance 
factor and maximum facet size factor).

If one wants to simulate the NVH behavior of gears, it is important 
to avoid contact noise, since it is not possible to separate noise arising 
from contact discretization from noise arising from the actual model 
behavior (which is to be observed).

Based on the representation of the surface by this discretiza-

Figure 5: Bevel-gear contact pattern and pinion offset (applied torque 500Nm).

Gear Mesh Order z1=13

 
Harmonics of GMO 

 
Hunting tooth order 
 
 GCD is the greatest common divisor of both  
 the number of teeth (z1 and z2)

Low harmonics  
of the shaft speed 1,2,3,…

Table 4: Gear and Shaft related frequencies.

Figure 6: Multibody model of the case study E-axle.
Equation 1
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tion, Choi shows in [18-19] how the contact noise can be reduced 
by adding a spline surface representation to overcome the plane 
surface area of the triangles/quads. These smoothing functions 
approximate the real surface by the face normal direction of the 
surrounding elements and lead theoretically to a steady patch cross-
ing. Figure 8 exemplifies such an approximation based on an ideal 
circular shape and on a tooth flange. One can see a good surface 
representation is still dependent on the number of nodes/patches 
but the smoothing helps to reduce the gap between triangulation 

line and real geometry. As the spline rep-
resentation is done by checking the face 
normals of the surrounding elements, an 
edge in the geometry leads to a misinter-
pretation of the real surface, see Figure 8c. 
This is critical on the tooth flanges or on 
some kind of the modifications where such 
smoothing has to be omitted or the surface 
has to be divided on edges.

For the model of the pinion and gear, a 
dense surface representation has been cho-
sen where the plane tolerance factor is set to 
1, and the maximum facet size factor is set 
to 0.1. Contact smoothing has been  applied.

As the contact pattern of the pinion and 
gear contact cannot be easily described as a 
point or line contact, the Hertz theory can-
not be applied. To get a good estimation of 
the contact stiffness, it is useful to compare 
the results of the MBS contact pattern with 
other specialized software or FEM-based 
contact analysis. In this study, the contact 
pattern was matched with a specialized soft-
ware for bevel gears (see Figure 9).

3.2 FLEXIBLE BODY INTEGRATION

3.2.1 MODAL ANALYSIS
Modal analysis is the process of determin-
ing the dynamic characteristics of a system 
in forms of natural frequencies, damping 
factors, and mode shapes and using them to 
formulate a mathematical model to describe 
its dynamic behavior [20]. Free vibrations of 
an MDOF {x} system can be studied starting 
from its undamped equation of motion:

where [M] is the mass matrix, usually posi-
tive definite; [K ] is the stiffness matrix, 
which is semi-positive definite in case the 
system shows rigid body modes (as in the 
case of an electric axle on its mountings). 
The non-trivial solution of the equation pro-
vides the free vibration of the system.

Imposing a type of motion for which all 
Lagrangian coordinates depend on the same 
time function, i.e.

{x} = {f} sin(wt), leads to:

Non-trivial solutions are those for which 
the matrix (-w2[M] + [K]) is singular:

This equation represents an eigen value problem, where w2 is the 
eigen value (the square of the natural frequency of the system) and 
{f} is the eigen vector (the mode shape).

Electric axles are supported by mountings, whose main purpose 
is to isolate the disturbance coming from the system itself from the 
vehicle structure. To determine the six low-frequency rigid modes, 
the mass matrix can be written in the following form:

Figure 7: Contact discretization of the pinion surface.

Figure 8: Discretization examples.

Figure 9: Comparison of gear contact pattern: MBS simulation (left) and specialized bevel tool (right) – (applied 
torque 100 Nm).

Equation 2

Equation 3

Equation 4
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where m is the total mass of the system and Jij represents the compo-
nents of the mass moment of inertia tensor around each axis. The 
stiffness matrix depends on the mounting characteristics in terms 
of the static and dynamic stiffness.

The first flexible modes usually encountered for an electric axle 
are related to the bending modes of the supports, which connect the 
housing to the mountings. These modes can lead to the NVH distur-
bances for the driver if they propagate toward the vehicle structure 
interacting with other dynamic systems in a certain frequency band, 
i.e., in a certain range of the vehicle speed.

To overcome issues of this type, it might be necessary to increase 
the supports stiffness-to-mass ratio corresponding to the disturbing 
mode to exit the interest frequency band or to reduce vibration, for 
example by using a tuned-mass damper.

3.2.2 MODAL REDUCTION TECHNIQUES
In structural dynamics, finite element models are adopted to rep-
resent the dynamic behavior of a substructure. These models are 
often too refined and have millions of DOFs, and, therefore, solving 
dynamic problems may result in unfeasible computation times. Thus, 
component modal reduction methods are adopted, see e.g. [21,22], 
whose idea is modal superposition: Nodal displacements {x} are writ-
ten as a linear combination of the normal modes {fj} and modal 
amplitudes hj:

The general form of the equations of motion for each substruc-
ture reads:

where [M] is the substructure mass matrix; [C] is the damping 
matrix; [K] is the stiffness matrix, and {p} + {g} is the force vector. 
Here, {p} denotes the externally applied forces, and {g} represents the 
forces coming from the neighboring substructures. The reduction is 
performed by transforming the set of the original DOFs {x} into a set 
of the generalized DOFs {q} via the transformation matrix [R]:

 [R] is the reduction basis, whose dimensions are n × r. The reduced 
set of DOFs (r) should be smaller than the original set of DOFs (n), for 
an efficient reduction.

Substituting {x} into the equation of motion leads to:

where {r} is the error arising from the fact that the reduced set of 
DOFs does not span the full solution space. An error is only allowed 
in the space not spanned by the reduction basis, i.e., [R]T{r} = 0. The 
projection of the previous equation onto the reduction basis gives:

i.e.:

Figure 10: Selection of vibration modes of housing – structural modes (A-F) and boundary modes (X-Z).

Equation 5

Equation 6

Equation 7

Equation 8

Equation 11

Equation 10

Equation 9
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Generally, a basis is built from a set of vibration modes, which 
contain information of the substructure’s dynamic behavior, and a 
set of static modes, which represent the static deformations caused 
by neighboring substructures.

3.2.3 THE CRAIG-BAMPTON METHOD
In the Craig-Bampton method, the substructure DOFs are divided 
into boundary and interface DOFs, each of them referring to a spe-
cific node-set in the finite element model, see [23]:

 � The vibrational information is the set of fixed-interface vibra-
tion modes: The substructure is fixed at its boundary DOFs and analy-
sis is done to obtain the eigenmodes.

 � Constraint modes are used to represent the static deformations 
of a substructure caused by neighboring substructures.

Fixed-interface vibration modes can be computed by constraining 
the boundary DOFs. The first step is the partitioning of DOFs into the 
boundary {xb} and internal {xi}. By neglecting the damping, equa-
tions of motion can be written as:
 

where {gb} contains the reaction forces with neighboring substruc-
tures. Constraining the boundary DOFs ({xb} = {0}) leads to:

That can be solved as an eigen value problem:

The result is the set of eigen modes and eigen frequencies of the 
substructure constrained at its boundary  DOFs (fixed-interface vibra-
tion modes):

Constraint modes contain the substructure static response to an 
applied boundary displacement. They are, in fact, representative of 
the static deformation due to a unit displacement applied to one 
of the boundary DOFs, while the remaining boundary DOFs are 

restrained, and no forces are applied to the internal DOFs.
The first step is again partitioning the DOFs into the boundary 

and internal. In this case, the second equation, neglecting the inertia 
forces, reads:

From which:

The columns of the static condensation matrix -[Kii]
-1[Kib] contain 

the static modes, which represent the static response of the internal 
DOFs {xi} for a unit displacement of the boundary DOFs {xb}.

The original set of DOFs can thus be reduced to a set of boundary 
DOFs, as:

Once the constraint modes and fixed-interface vibration modes 
have been obtained, the displacement field of the interface nodes can 
be written through the superposition of the static and dynamic modes.

This is a function of the displacement field {xb} of the boundary 
nodes only; this is a crucial point of every condensation method:

The reduction basis therefore yields:

Finally,

The generalized DOFs vector contains both the physical displace-
ments of the boundary nodes {xb} and the modal coordinates {hi}.

The first advantage of the Craig-Bampton method is the fact both 
the constraint modes and the fixed- interface vibration modes can be 
easily computed. Then, in the reduced system, the original boundary 
DOFs are retained, allowing to add or replace substructures without 
having to analyze again the full model. In fact, the system substruc-
tures relate to joints at the boundary nodes.

In Figure 10, a selection of the representative modes of the E-axles 
housing is shown for both structural and boundary modes.

4 NVH ANALYSIS OF THE E-AXLE  
WITH MOUNTING OFFSET
In this section, the NVH analysis of the case study E-axle is presented. 
The simulations are carried out to evaluate the influence of both posi-
tive and negative mounting offsets (±H) on the vibration behavior of 
the system; five scenarios have been considered:

 �H = 0 mm (Zero Offset).
 �H = ±0.1 mm.
 �H =  ± 0.5 mm.

As a load case, a speedup is simulated going linear from 0 to 500 
rad/s on the input shaft driven by a constraint equation in 5 seconds. 
A torque of 50Nm is applied to each output shaft. The load on the 
output shafts is applied in the first 0.1 second of the simulation fol-
lowing a third-grade polynomial function.

As in real test benches, it is a usable practice to place accelerome-
ters on the selected measurement points. Therefore, in the multibody 
simulation (MBS), several virtual accelerometers have been defined, 
as shown in Figure 11.

In the following, the results relative to the accelerometer A in 
Figure 11 are shown for all the considered scenarios. The accelera-

Equation 12

Equation 13

Equation 14

Equation 15

Equation 16

Equation 17

Equation 19

Equation 21

Equation 20

Equation 18

Figure 11: Virtual accelerometers on E-axle housing.
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tions normal to the surface are shown in the Campbell diagrams in 
Figure 12 and Figure 13, respectively, for both positive and negative 
pinion offsets H. As observed in Figure 12, the positive pinion offset 
leads to an increase of the acceleration amplitude following the dis-
placement of the pinion.

The negative pinion offset shows a reduction of acceleration at -0.1 
shift compared to the zero-offset position; while a further pinion shift 
(H = -0.5) results in increased accelerations. This consideration is quite 
common in the practice of the bevel-gears manufacturing, since the 
pinion offset is experimentally determined by bench testing, minimiz-
ing the transmission error of the gear pair. The explained procedure, 
suitably tuned with experimental validation, allows to perform a vir-
tual test bench for the optimization of pinion offset.

The influence of the pinion position has also been determined 
by a different system simulation where the pinion is shifted dur-
ing a constant speed simulation. As an example, two steady state 
simulations have been analyzed: the first with input velocity of 270 

rad/s and the second with input velocity of 460 rad/s, see Figure 14. 
At these speeds, the system showed the most dynamic responses in 
the previous simulations. The results show the optimum pinion shift 
(minimizing accelerations on control point) is dependent on  the 
rotational speed of the system.

4.1 SOUND PRESSURE CALCULATION
To compare the results based on the emitted sound pressure level, 
FEM or BEM methods can be applied based on the results generated 
in the multibody simulation for nearfield and even far field analysis 
of the airborne sound. However, to easily get a qualitative idea of the 
improvement, the structure can also be simplified by a “0-Order” 
spherical radiator based on the structural vibrations.

The power of sound can be calculated based on [24] as:

Figure 12: Campbell diagram of acceleration on control point – positive pinion offset.

Figure 13: Campbell diagram of acceleration on control point – negative pinion offset.

Equation 22
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 The radius of the representative sphere, RK, can be guessed by the 
dimensions of the emitting structure. Since this is set as constant for 
all simulations, it might cause an error in the exact value of the SPL, 
but it might be enough for a qualitative comparison

With this assumption, the omnidirectional radiator angular 
frequency of the sphere is determined as:

Furthermore, the density of the 
surrounding air, as well as the sound 
velocity, have to be taken into account:

The emitting surface velocity vr at a 
certain frequency w are a direct output 
of the multibody simulation and  can be 
generated from the transient signal of the 
surface nodes by applying a fast fourier 
transformation (FFT). P0 is defined as a base 
power:

The sound pressure level can then be 
calculated from:

Applying this simplified assumption to a 
mean velocity of all virtual accelerometers, 
as shown in Table 5, a negative shift of the 
bevel gear about 0.1 mm leads to a drop of 
the emitted sound pressure of 2.0 dB.

5 CONCLUSIONS
The multibody model proposed in this 

article allows to assess the noise and vibration performance of an 
E-axle with bevel gears as a function of the mounting distance (H). 
As expected, a significant reduction of the accelerations on a control 
point on the housing is observed for a specific mounting distance. A 
suitable tuning of the model by means of experimental validation 
is the object of further study to allow the realization of a virtual test 
bench for the optimization of the mounting distance.
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