
The proof of the reliability of a gear drive is now an additional 
requirement. In Europe, the acceptance authorities for wind 
turbines are requesting a system reliability proof from gear-
box manufacturers. The AGMA committee reviewing the 
AGMA 6006 standard for wind turbines is considering adding 
a chapter about “design for reliability.” However, reliability 
considerations are not new; NASA, for example, was in the 
1980s using reliability concepts for gear drives.

Most standardized methods used to assess the strength of 
gearbox components such as gears or shafts lead to a safety 
factor that expresses the ratio of permissible stress to effec-
tive stress. The permissible stress is determined based on a 
failure probability of the material strength value determined 
during the measurement of the S-N-curve.

In mechanical engineering, a safety factor greater than 1.0 
does not always imply “safe” or less than 1.0 “not safe.” It also 
depends on other reasons, as, for example, the consequences 
of a failure if a certain safety factor level is considered as safe 
or not. Therefore, it is quite difficult to understand the result 
of a gear strength analysis. For a drivetrain, the situation is 
even worse in that gear strength is expressed in safety fac-
tors for bending, pitting and scoring — but bearing strength 
is expressed in lifetime. So how is it possible to deduce if a 
drivetrain is safe?

Although these individual procedures for the design of a 
single component are very handy, it lacks an easy statement 
about the failure probability of the full system. This is aggra-
vated by the fact that the intrinsic failure probability of the 
methods for different components varies. This paper presents 
a method to transfer the safety factor of each component into 
a failure probability based on a Weibull distribution — taking 
material properties into account. After this step it is easy to 
obtain a probability function for the failure of the full system 
over lifetime. Based on this, a statement such as “the prob-
ability of a failure of the gearbox within 20,000 hours is less 
than 0.2%” can be made.

The paper describes in detail how for the main gearbox 
components — gears, shafts, bearings — the strength results 
according to standards can be transformed in a Weibull 
failure probability distribution. The method can be applied 
to all standard calculations according to ISO, DIN and 
AGMA — which are based on an S-N-curve. It can be used for 
calculation with nominal load or duty cycles.

To determine the reliability of the drive system, the trans-
mission elements are categorized: Is the failure of an element 
directly causing the gearbox failure? Is there redundancy? 

Thus, the system reliability can be determined with the com-
ponents’ reliabilities.

Design Life
Typically, machines are designed for a certain lifetime, as, for 
example, 20,000 hours. So, the design engineer will lay out all 
the components of a machine based on such a request. But the 
methods used to check if a component fulfills the request vary.

For gears, the normal calculation method, e.g. — ISO 6336 
(Ref. 4) — will provide, based on the requested life and the 
applied torque, a safety factor for bending and pitting. For 
bearings, the calculation method (per ISO281 (Ref.3)) will pro-
vide the attainable lifetime. For gears, the obtained safety fac-
tor must exceed a larger-than-requested minimum safety. The 
requested safety could be 1.0; but is often — depending on pre-
scriptions by specific application rules — higher than 1.

Basically, for all other machine elements such as shafts, 
bolts and housings, the verification methods are also differ-
ent. Calculation methods for mechanical parts were usually 
developed by different specialists working at different techni-
cal institutions. All these strength analysis methods have one 
thing in common, i.e. — they determine the stresses created 
by the applied loads and then compare these stresses with 
the permitted stresses. However, the calculation procedures 
differ greatly, depending on what type of machine element 
is involved (for example — bearings, shafts, gears or bolts). 
So, a check if all components of the verified object fulfills the 
requirements needs of specific knowhow.
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Symbol Notation Units
R Reliability (of a single component) %
Rs Reliability of system %
t Number of load cycles

t0
Number of load cycles without failure (no failure 

during the to cycles, from the begin ning)

T Characteristic service life (in cycles) with 63.2% 
probability of failure (or 36.8% reliabil ity)

fac Number of load cycles per hour (conversion of 
operating hours into load cycles) 1/h

B Weibull form parameter
ftB Factor according to table 2

Hatt Achievable service life of the component (in hours) h

Hatt10
Achievable service life of the component with 10% 

probability of failure h

Fo
Specific probability of failure (for calculation of Hatt 

according to table 1) %
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Failure Probability of Machine Elements
All of the above methods have one major weakness 
in common in that they are based on an intrinsic 
failure probability that differs from method to meth-
od (Table 1). So if a shaft has a calculated safety fac-
tor of 1.2 and a gear root has a safety factor of 1.3, it is 
not clear which is the more critical component.

A material strength value with a failure probabil-
ity of 90% is higher than a material strength value 
with a failure probability of 99%. Therefore, if the 
90% failure probability is applied, the safety factor 
is greater and the element has both a greater ser-
vice life and a lower damage rate for its design life; 
damage that is calculated using methods prescrib-
ing different failure probabilities cannot be com-
pared directly. A gear unit may fail because of a part 
that is not considered to be critical breaks prema-
turely; this happens quite frequently in real life.

To overcome this problem, the reliability concept 
can be used. Here the result is a curve that shows the prob-
ability of failure of a component or a system over the lifetime. 
When statistical parameters, such as the scatter of results in 
a standard distribution, are determined based on measure-
ments on probes, a probability of failure as a function of time 
(or cycles) can be determined using a statistical approach. 
The opposite of the probability of failure is called “reliability.” 
Therefore, since the reliability calculation takes into consid-
eration the inherent failure probability (Table 1), the calcu-
lated reliability at design life of different parts can be com-
pared effectively with each other. Also, at a given probability 
level the component with the smallest achievable life is the 
critical component of the system.

Probability Distributions
In statistics, probability distributions are used to describe 
stochastic processes (see numerous textbooks, e.g. (Ref. 8)). A 
probability distribution is a function that gives the likelihood 
of an event for a specific value of a probability variable. In our 
case the event is failure (or survival) and the probability vari-
able is the number of load cycles.

The reliability function R(t) gives the probability of survival 
until t load cycles. For the definition of a probability distri-
bution the first derivative R’(t) is defined, i.e. — the so-called 
density. The density is a function that defines the probability 
of the event happening at a given number of load cycles.

The most common distribution for general purposes is the 
normal distribution. This distribution is defined by the mean 
value μ and the standard deviation σ. The standard deviation 
σ controls how wide the distribution is. However, although 
for small σ the density looks like it becomes zero with enough 
distance from the mean, it never actually does. So also for 
negative values of t; there is a positive likelihood that failure 
occurs. Due to these limitations the normal distribution is 
not very often used in reliability engineering.

A more general approach is the Weibull distribution, in 
which two variants are possible — the two-parametric and 
the three-parametric Weibull distribution, where the two-
parametric is a special case of the three-parametric.

The two-parametric Weibull distribution leads to the reli-
ability function

(1)R(t) = e
– ( t )b

T

where T is the characteristic lifetime (defined by the condi-
tion R (T) = 0.632) and b is the shape parameter.

The three-parametric Weibull distribution has t0 as a third 
parameter, which shifts the first occurrence of failure to the 
point t0 by the substitution

(2)t —> t~ – t0

This substitution gives the reliability function

(3)
R(t) = e

– ( t–t0 )b

T–t0

Determining the Reliability of Machine 
Elements

There are currently no mechanical engineering standards that 
include the calculation of probability. A classic source for this 
calculation is Bertsche’s book (Ref. 2), in which the possible 
processes have been described in great detail. Bertsche rec-
ommends the use of the 3- parameter Weibull distribution.

Parameters T and t0 can be derived from the achievable life 
of the component, Hatt, as follows (with failure probability Fo 
according to the calculation method from Table 1, b and ftB 

from Table 2 according to Bertsche):

(4)
T = (

Hatt – ftB × Hatt10 + ftb × Hatt10)× fac

β√–ln (1– Fo )100

(5)t0 = ftb × Hatt10 × fac

with

(6)
Hatt10  = Hatt

(1 – ftB) ×
β√ + ftB

ln (1– Fo )100
ln (0.9)

Equation 1 for R(t) can now be used to display the progres-
sion of reliability over time (or number of cycles) as a graphic. 

Table 1  Probability of failure used by various calculation methods when determining 
material properties

Calculation procedure Probability of 
failure Fo

Comment

Shaft, DIN 743 2.5% Assumed, not documented
Shaft, FKM guideline 2.5%

Shaft, AGMA 6001 1% If kc = 0.817
Bearing, ISO 281 10% If factor a1 = 1.0

Tooth flank, ISO 6336; DIN 3990 1%
Tooth bending, ISO 6336; DIN 3990 1%

Tooth flank, AGMA 2001 1% If reliability factor KR = 1
Tooth bending, AGMA 2001 1°/0 If reliability factor KR = 1

Table 2  Factors for a Weibull distribution according to Bertsche (Ref. 2)
factor ftB Weibull form parameter b

Shafts 0.7 to 0.9 1.1 to 1.9
Ball bearing 0.1 to 0.3 1.1

Roller bearing 0.1 to 0.3 1.35
Tooth flank 0.4 to 0.8 1.1 to 1.5
Tooth root 0.8 to 0.95 1.2 to 2.2
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The load cycle values t0 and T can then be calculated based 
on a service life calculation. Equations 4-6, using the achiev-
able service life Hatt, can be used for this purpose.

An Example
To illustrate the differences between the concept of safety fac-
tors and reliability an example is shown. Figure 1 shows the 
model of a two-stage gearbox in KISSsys (Ref. 6). The design 
life is 5,000 h, so the critical component appears to be gear 
1 with a flank safety factor of slightly below 1.0 (0.996) — see 

box “1.” The bearings have a calculated lifetime of above 7,000 
hours — see box 2 — and thus seems to be on the safe side.

However, looking at the reliability graph in Figure 2, the sit-
uation is different. The left-most first curve of individual com-
ponents is the one for gear 1, confirming the previous assess-
ment. But this is only true for relatively low probabilities; the 
lower horizontal red line is on the 90% probability level. Here, 
gear 1 has indeed the shortest lifetime. Still, this is above the 
required 5,000h design life — which is marked with the verti-
cal grey line.

At 99% probability, the bearing life is much lower — about 
3,000 hours. This is marked with the upper horizontal red 
line; indeed, the most critical components are the bearings.

Determining System Reliability
Determining the overall reliability of a gear drive is of pri-
mary concern for all important drives. In particular, people 
who are not technical specialists are not particularly inter-
ested in knowing which is the critical bearing in a drive; they 
are much more concerned about the drive’s service reliability 
over a predefined period of operation. However, the reliabil-
ity of individual elements in a gear unit must be used to de-
termine the reliability of the overall system.

The functional block diagram of the gear unit must be ana-
lyzed before the reliability of individual components is used 
to calculate overall reliability. In order to determine system 
reliability, the gear unit elements are classified according to 
their significance, i.e. — if the element fails, does it directly 
cause the failure of the entire gear unit? Or are redundancies 
present? The overall reliability of the entire system can then 
be determined by mathematically combining the reliability 
of the individual components.

In particular, a distinction must be drawn as to whether the 
significant components are connected in series or in parallel. 

Figure 1  Example of gearbox modeled in KISSsys.

Figure 2  Calculated reliability curves.
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Although this appears to be complicated at first glance, it is 
usually quite straightforward for most gear units. If any of the 
vital elements in a standard gear unit (bearing, shaft, gear) 
break, this will cause the entire gear unit to fail. This means 
that all these elements are connected in series. Gear units 
designed with redundancies are not commonly found in 
practice. In this design type, the power flow runs through two 
parallel branches within the gear unit. If an element within 
one of the branches fails, the other branch continues to run 
the unit as a whole.

The following equation can be used to determine system 
reliability for serial functions:

(7)
Rs(t) =

Rc1(t) × Rc2(t) × … × Rcn(t) × 100 or Rs(t) = 100 × Π n Rci(t)
100 100 100 i=1 100

Bertsche (Ref. 2) has also developed formulae for the less-
commonly found cases for units with redundancies (parallel 
branches).

Reliability for Gear Pairs and 
Planetary Stages

Gear pairs and planetary stages will be dis-
cussed here as an introduction to examine 
entire systems; these types of configura-
tions are sub-systems in themselves. The 
procedure for a classic gear pair is quite 
straightforward: the overall reliability is 
the product of the four “elements” — tooth 
root (f) and tooth flank (h), for the pinion 
(1) and the gear (2) in each case:

(8)
Rpair(t) = Rf1(t) × Rh1(t) × Rf2(t) × Rh2(t) × 100

100 100 100 100

In planetary stages, the power flow 
is distributed across the planets. 
Theoretically, the planetary stage could 

continue working — even if one planet fails — because of the 
built-in redundancy of this design. Theoretically, therefore, 
the planet stage is connected in parallel. However, in practice 
the failure of one planet (gear or bearings) usually means that 
metallic fragments penetrate the tooth meshings and bear-
ings, and thus cause other parts to fail. For this reason, these 
elements have to be considered as connected in series. The 
reliability of the planetary stage can therefore be determined 
as follows (p: number of planets):

(9)
Rpstage(t) = Rf1(t) × Rh1(t) × ( Rf2(t) × Rh2(t) )

p

× Rf3(t) × Rh3(t) × 100
100 100 100 100 100 100

A publication by NASA (Ref. 7, Eq. 43) about the reliabil-
ity of planetary stages confirms the proposed method. The 
authors use the same approach for calculating overall reli-
ability, but without providing justification as to why they use 
the serial formula for the planets.

Figure 3  Reliability diagram for a planetary stage with 3 planets; the 3 serially accumulated planets are critical. The system reliability is virtually 
identical to the reliability of these 3 planets because the ring and the sun have a significantly higher degree of reliability.

Figure 4  Modern dual-clutch gear unit with a load spectrum (6 forward gears and one reverse gear); 
system reliability displayed with a linear scale.
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System reliability. The major benefit of using reliability as a 
parameter for qualifying the gear elements is that it is a quick 
and relatively simple method for determining system reliabil-
ity. In KISSsoft (Ref. 6) the achievable service life is also calcu-
lated every time a verification is performed. Consequently, 
the data for each individual element of the gear unit is auto-
matically available. This data is then forwarded to a system 
program as KISSsys (Ref. 6). System reliability can therefore 
be determined at system level. In addition to showing overall 
reliability, the weakest elements in a gear unit are also clearly 
displayed in this type of diagram.

In the case of vehicle gearboxes, the calculation for compo-
nents must be performed with a complex load spectrum that 
also takes into account the shift setting (shifted gear, time, torque 
and speed) (Fig. 4). This calculation determines the service life 
of all the components, and the reliability can be derived from 
these values. The calculation of system reliability also assumes 
that the components are switched in series. Obviously, if, for 
example, the second gear fails, the vehicle can still be driven in a 
different gear. However, this should be regarded as a hypotheti-
cal scenario that would apply in an emergency.

System reliability is of critical importance for gear units 
used for wind turbines (Fig. 5), because any repairs are very 
expensive. Wind turbine manufacturers therefore require 
their gear unit suppliers to provide very extensive proofs. 
Proofs of system reliability are already a requirement in this 
sector (Ref. 1). AGMA 6006 (Ref. 5), a U.S. standard for wind 
power gear units, is currently under revision. It is likely that 
this revised version of AGMA 6006 will include a new method 
for calculating system reliability — the very first mechanical 
engineering standard to do so.

Outlook
Displaying an analysis of gear drive strength in terms of sys-
tem reliability can easily be understood by people who do not 
have a detailed knowledge of the modern calculation meth-
ods used for gearbox components. It is also the only method 
that can be statistically evaluated and used to make a com-
prehensive assessment (gear unit will stop/will not stop) with 
a corresponding level of probability. This method has be-
come increasingly popular and widespread, but a number of 
problems still remain; for example: should the inclination of 
the S-N curve in the limited life range affect the Weibull form 
parameter β? As yet no reliable approaches to this problem 
have been documented and additional research is needed.

As mentioned, AGMA 6006 (Ref. 5), a U.S. standard for 
wind power gear units, is currently under revision. Since the 
first version of this standard appeared in 2003, it has been 
used as the basis for the currently valid international IEC/TC 
88 standard for gear units used in the wind power generation 
industry. It is likely that this revised version of AGMA 6006 
(Ref. 5) will include a new method for calculating system reli-
ability — the very first mechanical engineering standard to 
do so. We can then presume that the AGMA will propose this 
type of method in the IEC/TC 88 workgroup as a supplement 
to IEC 61400 “wind turbines” regulation.

Summary
Modern calculation methods based on S-N curves can be 
used to analyze every essential element in a gear unit. These 
methods determine the achievable service life of the gearbox 
elements, which in turn can be used to calculate the Weibull 
distribution for reliability.

The reliability of a gear drive can be determined by calcu-
lating the reliability of the gear unit components. The use of 
reliability as a parameter for assessing a gear unit is currently 

Figure 5  Wind power gear unit with its reliability.
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becoming a popular method, and could well be a requirement 
in the near future for gear units used in wind power generation.

People who are not technical experts will find this method 
of displaying reliability much easier to understand than a 
table of achieved safeties for gears and service life values for 
rolling bearings. They do not need to understand that mate-
rial properties that comply with ISO 6336 have a 1% failure 
probability, or that the calculated service life of bearings 
has 10% failure probability. Nor do they need to know that 
a higher minimum safety is usually prescribed against tooth 
bending than against pitting. All these different approaches 
can be used together to provide a well-balanced statement of 
reliability, with values that really can be compared with each 
other. However, when a design review expert is provided with 
these types of calculations he must (maybe even more so 
than before) still check exactly which conditions, for exam-
ple — which minimum safeties — have been used to deter-
mine reliability. 
For more information.
Questions or comments regarding this paper?
Contact Ulrich Kissling at ulrich.kissling@kisssoft.ag.
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